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i § ABSTRACT: A key step in Howden's method [5] for algebraic program testing
requires checking the algebraic identity of multinomials. Howden's solution
requires evaluations in at least " points for m-ary multinomials. This

note presents a probabilistic solution which achieves small probability of

error on 30 points.
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Until very recently, research in software reliability has divided quite
neatly into two -- usually warring -- camps: methodologies with a mathematical
basis and methodologies without such a basis. In the former view, '"reliability"
is identified with '"correctness'" and the principle tool has been formal and
informal verification [1]. In the latter view, 'reliability" is taken to mean
the ability to meet overall functional goals to within some predefined limits
[2,3]. We have argued in [4] that the latter view holds a great deal of promise
for further development at both the practical and analytical levels. Howden [5]
proposes a first step in this direction by describing a method for "testing'" a
certain restricted class of programs whose behavior can -- in a sense Howden
makes precise -- be algebraicized. In this way, "testing' a program is reduced
to an equivalence test, the major components of which become

(i) a combinatorial identification of "equivalent" structures;

(ii) an algebraic test

where fi’ i =1, 2 is a multivariable polynomial (multinomial) of degree
specified by the program being considered.
In arriving at a method for exact solution of (ii), Howden derives an algorithm
which requires evaluation of multinomials f(xl, Ve xm) of maximal degree d at
0(d + 1)m points. For large valves of m (a typical case for realistic examples),
this method becomes prohibitively expensive.
Since, however, a test for reliability rather than a certification of correctness
is desired, a natural question is whether or not Howden's method can be improved by

settling for less than an exact solution to (ii).
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We are inspired by Rabin [6] and, less directly, by the many successes
of Erdos and Spencer [7] to attempt a probabilistic solution to (ii). Using
these methods, we show that (ii) can be tested with probability of error €
with only 0(g(€)) evaluations of multinomials, where g is a slowly growing
function of only €. 1In particular, 30 or so evaluations should give sufficiently
small probability of error for most practical situations. The remainder of this
note is devoted to proving this result.

Let us denote by P#O(m’d) the class of multinomials

f(xl, e ey xm) # 0

(over some arbitrary but fixed integral domain) whose degree does not exceed d > 0.
We define

P(m,d,r) = min Prob {1 <'x. < r, f(xl, Wik xm) $ 0}

~~~ 2l

o P+0(m,d)

We think of P(m,d,r) as the minimal relative frequency with which witnesses
to the non-nullity of a multinomial of the appropriate kind can occur in the
choosen interval. Notice, in particular, that since a polynomial of degree d has
at most d roots (ignoring multiplicity), the largest probability of finding a
root must be at least the probability of finding a root by randomly sampling in

the interval 1 < x

X < r; thus

P(l,d,r) > 1 - d/r .
Now, consider some

f(xyy oo s x,y) $0

of degree at most d. But there are then multinomials'[gi} { < g Mot all } 0,
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such that
E i
f(xl. ety xm.y) gi(xl, siatelis xm)y .

i=0

Let us suppose that g € P+0(m,d). Thus

Prob {1 < x <r, f(xl, peepou xm,y) + 0}

i

> Prob {gk(xl, ey fm) $ 0 and y is not a root}
> P(m,d,r)(1 - d/r) .

Continuing inductively, we obtain

P(m,d,r) > (1 - d/r)" (1)
But —dm
m
e e ey R T L a (2)
m > @ m = o m L3

Combining (1) and (2), we have for large m, r = dm,

P(m,d,dm) >

v
(]
.

Thus, with t evaluations of f for independent choices of points from the m-cube
with sides r = dm, the probability of missing a witness to the non-nullity of

f(xl, i xm) is at most

-l)t ;
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Table 1 shows the probable error in testing f = 0 by t evaluations of

randomly chosen points for some typical values of d,m,r,t.

(1 - P(m,d,r)]"

dm| r £=10 £=20 t=30 £=50 £=100
10 | 10 Lex g0 1e% i’  1.0x 107° L gxw®
20 | 10 0.23 8B X At 1.3 % 1072 7.0% W 4.8% 107
50 | 10 0.93 0.87 0.82 0.71 0.51

102| 10 1.0 1.0 1.0 1.0 1.0

10 | 10° | 6.0 x 1077 <1979 <1070 LT s o R
w10 | 39x10? asal «10 0 <109 <10~20

so J10° | 8.9x167 78x1007 7.0 % 1013 sio <1020
10°] 102 1.0 1.0 1.0 1.0 1.0

10 | 10° oY <10™20 <10~20 - <1020

20 j10° | 9.ax 367 <19 Y <ig 10729 <1y 2P

so f10° | 7.6 x 10°H 19”4 <1020 3T T

Notice that for dm = r, t = 30, this is already < 10",

Table 1. Probable Error in Testing f(xl, Shetas 2y xm) =0

(degree < d) by t random evaluations in {1, ... , r}
5
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